Modern Chemical **Diagnostics**

Pascal Mavrommatis

EA Technology, Capenhurst UK

With you today

Professor Pascal **Mavrommatis** Principal Consultant

Agenda

- 1. Dissolved gas analysis and its interpretation
- 2. Historical development of diagnostics
- 3. Uncertainty of dissolved gas analysis
- 4. Uncertainty of diagnostics
- 5. The importance of extraction techniques
- 6. Stray gassing
- 7. Case study 1
- 8. Case study 2

Dissolved gas analysis and its interpretation

The interpretation of dissolved gas analysis results requires considerable skill and several methods are available to assist.

Several methods were introduced since the 1970's.

- 1. Statistic threshold
- 2. Rogers
- 3. Halstead
- 4. LCIE
- 5. Laborelec
- 6. GE
- 7. Church
- 8. Dörnenberg 9. Potthoff 10. Shanks
- 11. Trilinear Plot
- 12. IEC
- 13. IEEE
- 14. Duval

- 1. Key gases: (Main Tank, Tap Changers): CH_4 , C_2H_6 , C_2H_4 and C_2H_2
- 2. Gas limits: CH_4 , C_2H_6 , C_2H_4 , C_2H_2 , CO and CO₂.
	- a. IEC BS-EN 60599: (Main Tank, Tap Changers)
	- b. IEEE C57.104, C57.130: (Main Tank)
	- c. Combustible gases: (Main Tank) TDCG

- 3. Gas Ratios,
	- a. IEC BS_EN60599 Main Tank: C_2H_2/C_2H_4 , CH₄/H₂, C_2H_4/C_2H_6
	- b. IEEE C57-104, C57-130 Main Tank
		- **I.** Doernenburg Ratios: CH_4/H_2 , C_2H_2/C_2H_4 , C_2H_2/CH_4 , C_2H_6/C_2H_2
		- $II.$ Roger's Ratios: CH_4/H_2 , C_2H_6/CH_4 , C_2H_4/C_2H_6 , C_2H_2/C_2H_4
	- c. Duval's Triangles (polygon) (Main Tank)

- 3. Gas Ratios,
	- d. Duval's Triangle 1: 100° (CH₄/(CH₄+C₂H₄+C₂H₂)) etc.
	- e. Duval's Triangle 4: $100*(H_2/(H_2+CH_4+C_2H_6))$ etc.
	- f. Duval's Triangle 5: $100*(CH_4/(CH_4+C_2H_4+C_2H_6))$ etc.
	- g. Duval's Triangle 2 OLTC: $100*(CH_4/(CH_4+C_2H_4+C_2H_2))$ etc.
	- h. MR VR OLTC: 100* $(C_2H_4 + C_3H_6)/(C_2H_6 + C_3H_8)$), 100* (CH_4/C_2H_4) , $100^*(C_2H_2/C_2H_6)$.

- 3. Gas Ratios,
	- i. MR VV OLTC: $100*(C_2H_4/C_2H_6)$, $100*(CH_4/C_2H_4)$, $100*(C_2H_2/C_2H_6)$
	- j. MR W OLTC: $100*(C_2H_4 + C_3H_6)/(C_2H_6 + C_3H_8)$), $100*(CH_4/C_2H_4)$, 100^{\ast} (C₂H₂/ C₂H₆)
	- k. Doble OLTC: (C_2H_4/C_2H_2) , (CH_4/C_2H_2) , $((H_2+C_2H_2)/(TDCG-CO))$

- 3. Gas Ratios,
	- a. Ratio Method OLTC
		- **I.** $[(CH_4+C_2H_6+C_2H_4)/(H_2+CH_4+C_2H_6+C_2H_4+C_2H_6)]<0.5$
		- \blacksquare . [(CH₄+C₂H₆+C₂H₄)/(C₂H₂)]<2.0
		- $III. \quad [C_2H_4)/(C_2H_2)]<1.0$
- 4. Duval's Triangles (polygon) (Main Tank)

- 5. Delta X normalised energy intensity.
- 6. Trend analysis.
- 7. Pattern recognition.
- 8. Fingerprinting.
- 9. Scoring technique.
- 10.Rate of gas generated

But what is the common denominator of the above mentioned techniques with perhaps the exception of the key gases technique?

In the battle between the Intellect and the senses, the senses is always the winner!

Poor Intellect, said the senses, are you attempting to defeat us? When you are borrowing your very knowledge from us? Your victory is in fact your defeat.

Democretus 480 b.c.

Uncertainty of results - reproducibility

IEC 60567:201 Sets the result Reproducibility at 20% for medium concentrations.

ASTM D3612:2017 uses a different approach. It considers that Reproducibility is a function of concentration, according to the equation.

Ranging from 18% to 63% x concentration for different gasses.

Uncertainty in diagnostics

Considering as the best scenario of uncertainty on results, the 20% suggested by IEC we then

have; σ = 20 for a single gas such as a limit of a key gas.

The Variance σ^2_{sum} of two or more independent normally distributed random variables, is the sum of the variances; $\sigma^2_{\text{sum}} = \sigma^2_{1} + \sigma^2_{2} + \dots + \sigma^2_{n}$

The Variance σ^2 _{ratio} of two or more independent normally distributed random variables, is the sum of the variances; $\sigma^2_{\rm ratio} = (100^* \sigma_1/\mu_1)^2 + (100^* \sigma_2/\mu_2)^2$

Thus for Duval's Triangle uncertainty at a 20% measurement uncertainty, we have for each side of the triangle;

Numerator $\sigma_{N}=20$, Denominator $\sigma_{D}=SQRT(20^{2}+20^{2}+20^{2})=34.64$ And Ratio (since is already described in percentage) σ^2 _T=20^2+34.64^2 or Uncertainty of σ ^{-40%} for each side of the triangle

Dissolved gas analysis

Gas extraction techniques

- 1. Total extraction
	- 1. Toeppler vacuum extraction
	- 2. Mercury-less vacuum extraction
	- 3. Gas stripping
- 2. Partial extraction
	- 1. Head space.
	- 2. Partial gas stripping.

Dissolved gas analysis

Total versus partial extraction

- 1. Total extraction
	- 1. Extracts all gases >99.9%.
	- 2. Utilises mild conditions.
	- 3. Uses vacuum & stirring.
	- 4. No algorithm needed.
	- 5. Slightly prone to air ingress.
- 2. Advantages & disadvantages
	- 1. Can be automated.
	- 2. No preparation step.
	- 3. No matrix interference.
	- 4. Sample volumes 5-250ml.
	- 5. Higher sensitivities.
	- 6. Earlier warning.
	- 7. Absolute values.
	- 8. Higher accuracy.
	- 9. Better precision.
	- 10. More accurate ratios of gases.
	- 11. Faster analysis time.
	- 12. Lower instrument down time.
	- 13. Better historical profile.
	- 14. But labour intensive.

Dissolved gas analysis

Total versus partial extraction

- 1. Partial extraction
	- 1. Equilibrates gases once between Liquid & Gas phase.
	- 2. Extracts different gases at different proportions.
	- 3. Extraction is concentration dependent.
	- 4. Utilises moderate conditions.
	- 5. Uses Temperature.
	- 6. Algorithm is necessary.
	- 7. Prone to air ingress
	- 8. Prone to matrix.
- 2. Advantages & disadvantages
	- 1. Automation.
	- 2. Small sample volume <16ml.
	- 3. Run unattended.
	- 4. But extraction is measurand dependant.
	- 5. Extracts different gases at different proportions.
	- 6. Exposed to matrix interference.
	- 7. Prone to air ingress.
	- 8. Requires a calculating algorithm.
	- 9. Uses temperature.
	- 10. Uses a large quantity of inert gas

The Science of Analytical Chemistry sets one extremely important rule:

One can never measure anything with any degree of confidence if the outcome depends on the measurand!

An extract from CIGRE Group WG15

It has been observed⁴ that k values may vary depending on the matrix of gases present in oil. For instance, with all types of oils they are 10% lower for hydrogen when using 1% mixtures of hydrogen in air rather than pure hydrogen. With silicone oils they are 8% lower for carbon monoxide. **They also depend on the high or low levels of air, nitrogen or fault gases present in oils**, and may thus be different in sealed and air-breathing equipment. They depend on the chemical composition of oils and are different in oxidized oils⁶ and in the presence in oil of chemicals such as acetone $2,4-6$.

An extract from CIGRE Group WG15

A more direct and reliable method for the determination of partition coefficients has been developed by WG15⁴ . It consists in bubbling in oil pure gases or 1% mixtures of these gases in air up to equilibrium, extracting these gases completely using Toepler or Partial Degassing with multiple cycles of vacuum extraction, then measuring the total volume of gas extracted.

Stray gassing - definition

The phenomenon of generation of gases, at moderate temperatures (a hot spot temperature less than 120° C) and in the absence of any fault (thermal or electrical), in a transformer oil is known as stray gassing.

Initially, hydrogen was observed and considered as the only gas contributing to stray gassing. More recently carbon monoxide, methane, ethane and even ethylene has also been observed.

Stray gassing - outcome

Dissolved gas analysis results does not necessarily distinguish between a stray gassing condition and a fault condition.

Stray gassing known facts so far

- I. Stray gassing generates –amongst heavier molecules- the same small gas molecules involved in diagnostics. Namely; H₂, CH₄, C2H6, C2H4, but also C3H8, and C3H6.
- II. The gases are produced under moderate temperatures and in the absence of electrical activity.
- III. The production is continuous, but at varying rates governed by reaction kinetics.
- IV. The gas generation is accelerated or catalyzed by various promoters known as "sensitisers".
- V. Their presence disrupts the normal diagnostic assessment process.

Percentage of transformers stray gassing versus age

- 10-15 years, 8.6%
- 5-10 years, 4.8%

Percentage of transformers stray gassing versus age

The gases generated

The gases generated – used oils

The gases generated

The gases generated

- 1. Gas ratios observed; $C_2H_6/C_2H_4 > 10$ and $C_3H_8/C_3H_6 > 10$
- 2. The above ratios may be larger for older transformers.
- 3. Consumption of oxygen is also observed and the ratio of $\mathrm{O_2/N_2}$ < 0.35
- 4. This also explains the presence of carbon monoxide as a stray gas.

What causes stray gassing?

- 1. It is thought that one of the causes is severe hydrotreating of the oil during refinery production.
- 2. Transformer material such as the grain oriented steel, or zinc plated steel.
- 3. Paints and varnishes, glues and epoxy bonding materials particularly if no sufficient amount of curing time has not been given.
- 4. Any type of incompatibility of construction materials may be a source of gassing.
- 5. Any contaminant in the oil that can act as a sensitiser.

Ways to deal with stray gassing

- 1. Observe rate of increase in in two or more consecutive tests)CO, H₂, CH, C₂H₆ and C₃H₈, and C₃H₆ also observe ratio of O₂/N₂ if $< 0.4.$
- 2. Examine and compare the rate of increase in concentration of the above mentioned gases.
	- I. If there is a regular pattern of increase (similar increase in all gases in two or more consecutive tests) then there is a strong suggestion for stray gassing. Perform stray gassing analysis to confirm.
	- II. If the rate of increase is different or higher than 5 ppm/day then there might be a fault developing. Stray gassing information might still be needed to establish type and severity of fault.

- Dissolved gas analysis has developed through out the years, but it has not always moved forward.
- As a result both research and diagnostics has experienced the consequences.
- Total extraction is by far the most accurate technique for oil analysis, but we have already moved away from it.
- Stray gassing is another threat masking diagnostics.

Summary of benefits

Better understanding of processes

Extend asset life

Maintain leadership within the industry

Generate opportunities

Research collaboration An example case study

Dissolved gas analysis results

Stray gas analysis results

Stray gas analysis results

Rate of change versus stray gas results

An example – ABB 48/48/16 MVA 132kV/36kV - **first derivative**

4xHours Operation

An example – ABB 48/48/16 MVA 132kV/36kV

An example – ABB 48/48/16 MVA 132kV/36kV - **second derivative**

4xHours Operation

An example – ABB 48/48/16 MVA 132kV/36kV

Dissolved gas analysis following thermal stress

An example – ABB 48/48/16 MVA 132kV/36kV

Stray gas rate production

An example – ABB 48/48/16 MVA 132kV/36kV

Stray gas analysis

Thank you

EA Technology Limited Capenhurst Technology Park Capenhurst, Chester CH1 6ES

www.eatechnology.com