

Adaptive Planning – Navigating Future Uncertainty with Increased Confidence

Carl Takamizawa - Chief Data Scientist, Arcadis

10/24/2023

The Future is uncertain and Organizations around the world face unprecedented risks and challenges in relation to climate adaptation - in many cases this is against a backdrop of under-investment...

Further, the investments choices we can make to solve and mitigate these challenges are also uncertain.

Key Themes to Cover

- The importance of shifting to a proactive climate event planning approach.
- This shift means consideration of multiple uncertainty dynamics.
- How we can frame Uncertainty Quantification in an Asset Investment Planning (AIP) context.
- Having carried out advanced AIP and generated multiple pathway futures, how can we be confident in a plan, whilst also ensuring it can adapt?

Asset Intensive Organizations Face a Series of Dynamic, Long-Term Challenges

Adaptive Planning Examples	Challenges Faced	Resolving these can deliver real benefits
 Long Term Water Resources Management Energy Transition Ports Process GHG Emissions – Net Zero Planning Drinking Water Quality Programs Data Network Infrastructure 	 Climate Forecast Uncertainty Consequence of a changing climate over the long-term, as well as increasing probability of major events Growth, as well as changing customer demands Mitigation Identification Uncertainty, and; Mitigation Delivery Uncertainty Long Term Strategy formation and adoption, as a result of compounding uncertainties 	Planning capability for many potential futures • Ensuring Asset Management Plans can adapt to adversity. Justification of long-term investment cases: • 'No Regrets' decisions required in both benign and adverse futures • Identification of activities to enable future options remain open
•		 Build trust and confidence in long-term planning E.g. UK Public listed firms are adopting methodologies and securing Government endorsements for enhanced investment

Large Water Utility Example

- **Climate**, **Growth**, **Demand**, **Environmental** and **Policy** drivers mean that many Water Utilities face likely, significant long-term deficits in the order of 100's of MI/d in the next 20+ years.
- In some geographies, this has led to Regulation shifts (e.g. least cost -> best value) and consideration of
 planning for resilience up to 1 in 500 year events relatively unheard of in recent planning periods
- Whilst we cannot accurately predict when these major climate events will occur, we can (and do):
 - Consider and model uncertainty range forecast impacts on measures, such as SDB;
 - Assess the resulting planning decision impacts
 - Formulate optimal mitigation strategies earlier

External Investment Drivers

- Whilst the future is uncertain, we can utilize the various modelled ranges to great effect;
- The broad range of impact does not preclude us from carrying out robust investment model uncertainty quantification.
- However...

https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/ukcp/ukcp18 -guidance---representative-concentration-pathways.pdf https://www.ukclimaterisk.org/wp-content/uploads/2021/06/CCRA3-Chapter-1-FINAL.pdf https://www.severntrent.com/content/dam/dwrmp24-st/STdWRMP24-Appendix-F-Decision Making.pdf

'Intrinsic' Investment Uncertainty

The asset investment options to achieve respective measure targets, address known risks etc. are themselves uncertain. The key areas of uncertainty are around:

Cost – by their nature, major projects/programs are impacted by numerous factors that affect outturn costs

Benefit – benefit valuation methodologies carry varying uncertainties, which are essential to consider

Lead Time to Benefit Delivery – often an overlooked parameter in asset investment planning – some problems/scenarios are sensitive to timely delivery

That's all very interesting, but so what?

To recap – UQ is important, however given the resultant complexity – how can we move forward from a planning perspective? We have worked with many organizations to frame solutions to this problem, in order to provide confidence in planning decision making – broadly speaking this looks like:

High Level View of the Approach

Uncertainty Quantification - DMU

Iteration Analysis

No/Least-Regrets Identification – All Time Vs Temporal

Scheme Choice Perspectives – 'Coin Toss' Option Benign Scenario (RCP2.6)

Scheme Choice Perspectives – 'Coin Toss' Option 'Most Likely' Scenario (RCP6)

Scheme Choice Perspectives – 'Coin Toss' Option Against All Futures

*interesting that a CBA lens isn't always the right choice in an uncertainty paradigm

Scheme Choice Perspectives – Benefit Lead Time Dependency

Again, how do we navigate all this additional information and insight?

Consider all possible combinations?

- It is possible to approach this problem programmatically;
- This example we looked at all 182 optimized 'legal' pathways, through ~50 alternate futures
- However, this generated more information that doesn't necessarily steer you towards
 what to actually do...

Home in on plausible futures?

- This leads to a need for more digestible 'route' plans
- The drawback here was the abstract nature of pathway naming...

We have found a mapping hierarchy to be most effective...

- ARCADIS GEN RESULTS VIEWER SCENARIO VIEWER Y PATHWAY SELECTOR LOWNLOAD CENTRE Pathway Selector Selected egislation Change Legislation Change 1 Amalgamated COR vernment Led Legislative Climate Adjustment - benign (202 Societal Shift ate Adjustment - benign (2038 Climate Triggered Change Environment - adverse (2040 pivot) Benian Environmer ronment - adverse (2035 pivo egislation Alternative Pathway Adverse Techno e Adjustment - adverse (2028) Feasi Adverse Grow ate Adjustment - adverse (2038) Feasib Population - adverse Feasible Benion Climate Change ent - adverse (2040 pivol) Am Adverse Climate Change Most Likely Plan CTC Feasible RESET PATHWAY SELECTION OPTIMISE PATHWAY SELECTION
- Mapping investment stream
 scenarios to digestible
 pathway categories allows
 us to pose easier to
 understand planning
 questions e.g. what if there
 is a policy change in 3
 years?, what if I defer the
 challenge of adverse climate
 on water supply?
- Defining the pivots, or deltas from the most likely pathway produces rich planning insights – such as swings in large capital project timings – both deferral and expedition

For Example... Pivot to an Adverse Climate Change Scenario

Gantt Representation... Additional Pipe Resilience Scheme Brought Forward

Example Process Emissions Pathway Comparison

- Pathway TOTEX profile comparisons for:
 - 'Most Likely Pathway' (MLP)
 - Alternate Legal Policy Shift assumption
 - Climate adjustment extremity case
 - Benign environmental pathway
- Scope 1 process emissions (tCO2e/yr.)
- Investment sensitivity to net-zero deadline quantified; some intuitive movement between alternative pathways

Conclusions, Outcomes, Next Steps...

Conclusions

- 1. AIP optimization models with significant input and external driver(s) uncertainty can still provide rich investment decision making insight, despite these broad range uncertainties
- 2. The least-cost plan is an important benchmark, however has the potential to contain high regret decisions, if not interrogated with advanced analytics techniques
- It is possible to identify the looming 'big ticket' investments through an adaptive planning approach

 further, even if commitment cannot be reached, feasibility studies can (and are) being triggered
 by these analyses

Conclusions, Outcomes, Next Steps...

Outcomes

- Greater Certainty Around Investment choices
 - Ability to quantify the impact of pathway changes e.g. acceleration, or deferral of sustainability challenges
- Business Planning Benefits to future scenario planning 'codifying' of multiple stakeholder views of uncertainty
- Real Business/Organization, and ultimately service user benefits
 - For Example in long term water resources planning (25-80 year SDB), this approach has supported a major Green Recovery Program – C\$940m/\$690m capital program, expediting capacity schemes with added social and environmental benefits

Conclusions, Outcomes, Next Steps...

Next Steps - further work to do, and ongoing in:

- GHG Process Emissions Net Zero Planning
 - Some UK clients pushing for 2030 net zero deadline
 - Australian clients working towards similar timeframes
- Adaptive Planning for Assets in proximity to the sea Ports, Water Treatment plants, Saline Intrusion
- Water Resilience we are seeing a significant growing demand for adaptive planning in this area
- **Drinking Water Quality** we are looking at flushing strategies to reduce customer quality complaints (Regulatory measure in the UK) with our clients
- New Wind Farm Location Selection we are helping to remove investment bias by applying uncertainty to MCA metrics; we are also looking at the applicability to offshore connections
- Healthcare Organization risk reduction across a large buildings portfolio